Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Opin Drug Saf ; : 1-10, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38456691

RESUMEN

BACKGROUND: Bruton's tyrosine kinase inhibitors (BTKis) are targeted treatments for B-cell tumors but have significant side effects. This study assesses and contrasts the side effects of BTKis alone and its four combination therapies. RESEARCH DESIGN AND METHODS: The reporting odds ratio (ROR) was used to analyze the data on three BTKis monotherapies and combinations of ibrutinib with rituximab, obinutuzumab, venetoclax, and lenalidomide in the FDA Adverse Event Reporting System (FAERS) database up to December 2022. RESULTS: We analyzed the top 20 PTs for each treatment regimen. In monotherapies, atrial fibrillation (ROR (95% CI): 9.88 (9.47-10.32)) in zanubrutinib and rash (6.97 (5.42-8.98)) in acalabrutinib had higher associations. In combinations, infection (6.86 (6.11-7.70)), atrial fibrillation (27.96 (22.61-34.58)) and myelosuppression (10.09 (8.89-11.46)) were vital signals when ibrutinib was combined with obinutuzumab, and pyrexia (4.22 (2.57-6.93)) had a high signal value when combined with lenalidomide. Hemorrhage had a lower signal value when combined with venetoclax compared to ibrutinib alone (2.50 (2.18-2.87) vs 3.60 (3.52-3.68)). CONCLUSIONS: The ibrutinib-obinutuzumab combo has the highest risk of infection, atrial fibrillation, and myelosuppression, and the ibrutinib-lenalidomide combo has the highest risk of pyrexia. However, the ibrutinib-venetoclax combo has a lower risk of hemorrhage than monotherapy.

2.
Drug Resist Updat ; 73: 101027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290407

RESUMEN

AIMS: Pancreatic cancer (PC) is a highly metastatic malignant tumor of the digestive system. Drug resistance frequently occurs during cancer treatment process. This study aimed to explore the link between chemoresistance and tumor metastasis in PC and its possible molecular and cellular mechanisms. METHODS: A Metastasis and Chemoresistance Signature (MCS) scoring system was built and validated based on metastasis- and chemoresistance-related genes using gene expression data of PC, and the model was applied to single-cell RNA sequencing data. The influence of linker histone H1.2 (H1-2) on PC was explored through in vitro and in vivo experiments including proliferation, invasion, migration, drug sensitivity, rescue experiments and immunohistochemistry, emphasizing its regulation with c-MYC signaling pathway. RESULTS: A novel MCS scoring system accurately predicted PC patient survival and was linked to chemoresistance and epithelial-mesenchymal transition (EMT) in PC single-cell RNA sequencing data. H1-2 emerged as a significant prognostic factor, with its high expression indicating increased chemoresistance and EMT. This upregulation was mediated by c-MYC, which was also found to be highly expressed in PC tissues. CONCLUSION: The MCS scoring system offers insights into PC chemoresistance and metastasis potential. Targeting H1-2 could enhance therapeutic strategies and improve PC patient outcomes.


Asunto(s)
Histonas , Neoplasias Pancreáticas , Humanos , Histonas/genética , Histonas/metabolismo , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/uso terapéutico , Línea Celular Tumoral , Transducción de Señal , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
4.
Front Oncol ; 13: 1138238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182151

RESUMEN

Background: Many studies have reported that N6-methyladenosine (m6A) modification plays a critical role in the epigenetic regulation of organisms and especially in the pathogenesis of malignant diseases. However, m6A research has mainly focused on methyltransferase activity mediated by METTL3, and few studies have focused on METTL16. The aim of this study was to investigate the mechanism of METTL16, which mediates m6A modification, and its role in pancreatic adenocarcinoma (PDAC) cell proliferation. Methods: Clinicopathologic and survival data were retrospectively collected from 175 PDAC patients from multiple clinical centers to detect the expression of METTL16. CCK-8, cell cycle, EdU and xenograft mouse model experiments were used to evaluate the proliferation effect of METTL16. Potential downstream pathways and mechanisms were explored via RNA sequencing, m6A sequencing, and bioinformatic analyses. Regulatory mechanisms were studied through methyltransferase inhibition, RIP, MeRIP‒qPCR assays. Results: We found that METTL16 expression was markedly downregulated in PDAC, and multivariate Cox regression analyses revealed that METTL16 was a protective factor for PDAC patients. We also demonstrated that METTL16 overexpression inhibited PDAC cell proliferation. Furthermore, we identified a METTL16-p21 signaling axis, with downregulation of METTL16 resulting in inhibition of CDKN1A (p21). Additionally, METTL16 silencing and overexpression experiments highlighted m6A modification alterations in PDAC. Conclusions: METTL16 plays a tumor-suppressive role and suppresses PDAC cell proliferation through the p21 pathway by mediating m6A modification. METTL16 may be a novel marker of PDAC carcinogenesis and target for the treatment of PDAC.

5.
Nanomedicine ; 50: 102671, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37054805

RESUMEN

OBJECTIVE: Perineural invasion (PNI) is associated with local recurrence, distant metastasis, and a poor prognosis in pancreatic cancer. However, rare attempt was made to identified the PNI intraoperative. To facilitate precise R0 excision of the tumor, we planned to develop a fluorescent probe for intraoperative imaging of the PNI using GAP-43 as the target and indocyanine green (ICG) as the carrier. METHODS: The probe was created by binding peptide antibody and ICG. Its targeting was tested in vitro and in vivo using a co-culture model of PC12 and tumor cells to create an in vitro neural invasion model and a mouse sciatic nerve invasion model. The small animal imaging system and surgical navigation system confirmed the probe's potential clinical applicability. The sciatic nerve damage model was created to confirm the probe's targeting. RESULTS: We used the pancreatic cancer samples and the public database to confirm that GAP-43 was preferentially overexpressed in pancreatic cancer, particularly in PNI. PC12 cells showed high GAP-43RA-PEG-ICG probe-specific absorption after being co-cultured with tumor cells in vitro. In the sciatic nerve invasion experiment, animals in probe group displayed a significantly stronger fluorescence signal at the PNI compared to ICG-NP and the contralateral normal nerves groups. Although only 60 % of mice appeared to have R0 resections by the naked eye, small animal imaging systems and surgical fluorescence navigation systems could remove the tumor with R0 precision. The injury model used in the probe imaging experimental trials demonstrated that the probe was specifically targeted to the injured nerve, regardless of whether the injury was infiltrated by a tumor or physical. CONCLUSION: We developed the GAP-43Ra-ICG-PEG, an active-targeting near-infrared fluorescent (NIRF) probe, that specifically binds to GAP-43-positive neural cells in an in vitro model of PNI. The probe efficiently visualized PNI lesions in pancreatic cancer in preclinical models, opening up new possibilities for NIRF-guided pancreatic surgery, particularly for PNI patients.


Asunto(s)
Verde de Indocianina , Neoplasias Pancreáticas , Ratas , Ratones , Animales , Colorantes Fluorescentes , Proteína GAP-43 , Neoplasias Pancreáticas/patología , Modelos Animales de Enfermedad , Neoplasias Pancreáticas
6.
Cancer Cell Int ; 22(1): 415, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539807

RESUMEN

BACKGROUND: MicroRNAs (miRNAs), as an indispensable type of non-coding RNA (ncRNA), participate in diverse biological processes. However, the specific regulatory mechanism of certain miRNAs in pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS: The expression of miR-194-5p in PDAC tissue microarray and cell lines were detected by RNA-scope and real-time quantitative PCR (RT-qPCR). The function of proliferation and migration carried by miR-194-5p in vitro and vivo was observed by several functional experiments. Informatics methods and RNA sequencing data were applied to explore the target of miR-194-5p and the upstream circular RNA (circRNA) of miR-194-5p. RNA-binding protein immunoprecipitation (RIP) assay and dual-luciferase reporter assay confirmed the relationships between miR-194-5p and SOCS2 or miR-194-5p and circPVRL3. The proliferation and migration abilities of SOCS2 and circPVRL3 were accessed by rescue experiments. RESULTS: In this study, we aimed to clarify the molecular mechanisms of miR-194-5p, which has critical roles during PDAC progression. We found that the expression of miR-194-5p was significantly upregulated in PDAC tissue compared to tumor-adjacent tissue and was highly related to age and nerve invasion according to RNAscope and RT‒qPCR. Overexpression of miR-194-5p accelerated the cell cycle and enhanced the proliferation and migration processes according to several functional experiments in vitro and in vivo. Specifically, circPVRL3, miR-194-5p, and SOCS2 were confirmed to work as competing endogenous RNAs (ceRNAs) according to informatics methods, RIP, and dual-luciferase reporter assays. Additionally, the rescue experiments confirmed the relationship among miR-194-5p, circPVRL3, and SOCS2 mRNA. Finally, the circPVRL3/miR-194-5p/SOCS2 axis activates the PI3K/AKT signaling pathway to regulate the proliferation and metastasis of PDAC. CONCLUSION: Our findings indicated that an increase of miR-194-5p caused by circPVRL3 downregulation stimulates the PI3K/AKT signaling pathway to promote PDAC progression via the circPVRL3/miR-194-5p/SOCS2 axis, which suggests that the circPVRL3/miR-194-5p/SOCS2 axis may be a potential therapeutic target for PDAC patients.

7.
Med Sci Monit ; 28: e938443, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36404606

RESUMEN

BACKGROUND Pancreaticoduodenectomy combined with revascularization (PDR) is the main surgical procedure for resectable pancreatic ductal adenocarcinoma (PDAC) with venous system invasion, but this procedure is discouraged in elderly patients because of physical complexity. Our aim was to explore the differences of perioperative and survival in patients of different ages who underwent PDR. MATERIAL AND METHODS We reviewed data from PDAC patients undergoing PDR from 2007 to 2018. Patients were subdivided into 3 groups according to age: <60 years, 60-70 years, and ≥70 years. Postoperative complications and long-term survival were compared among the 3 groups. RESULTS From 626 patients, 185 had en bloc venous resection who underwent PDR (103, 55, and 27 patients from young to elderly). Increasing age was linked to a higher prevalence of ICU management (P=0.035) and more serious complications (grade ≥III, P=0.043); overall mortality was 8.1% and did not significantly differ among age-matched groups. Further, there was no difference in overall survival (OS) or progression-free survival (PFS) based on age (<60, 60-70, ≥70, median OS were 9.7, 8.4 vs 9.1 months, respectively, P=0.787; median PFS were 6.9, 6.1 vs 8.4 months, respectively, P=0.603). However, patients <60 years whose tumors invaded the superior mesenteric vascular had better survival outcomes when compared with the other 2 groups (11.5 vs 8.4, 9.1 months, P=0.049). CONCLUSIONS The results show that age should not be considered an absolute contraindication for PDR, as elderly patients can achieve the same surgical efficacy and long-term survival prognosis.


Asunto(s)
Neoplasias Pancreáticas , Pancreaticoduodenectomía , Humanos , Anciano , Persona de Mediana Edad , Pancreaticoduodenectomía/métodos , Vena Porta/patología , Pancreatectomía , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
8.
Mol Cancer ; 21(1): 112, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538494

RESUMEN

BACKGROUND: Although gemcitabine has been considered as the first-line drug for advanced pancreatic cancer (PC), development of resistance to gemcitabine severely limits the effectiveness of this chemotherapy, and the underlying mechanism of gemcitabine resistance remains unclear. Various factors, such as ATP binding cassette (ABC) transporters, microRNAs and their downstream signaling pathways are included in chemoresistance to gemcitabine. This study investigated the potential mechanisms of microRNAs and ABC transporters related signaling pathways for PC resistance to gemcitabine both in vivo and in vitro. METHODS: Immunohistochemistry and Western blotting were applied to detect the expression of ABC transporters. Molecular docking analysis was performed to explore whether gemcitabine interacted with ABC transporters. Gain-of-function and loss-of-function analyses were performed to investigate the functions of hsa-miR-3178 in vitro and in vivo. Bioinformatics analysis, Western blotting and dual-luciferase reporter assay were used to confirm the downstream regulatory mechanisms of hsa-miR-3178. RESULTS: We found that P-gp, BCRP and MRP1 were highly expressed in gemcitabine-resistant PC tissues and cells. Molecular docking analysis revealed that gemcitabine can bind to the ABC transporters. Hsa-miR-3178 was upregulated in gemcitabine resistance PANC-1 cells as compared to its parental PANC-1 cells. Moreover, we found that hsa-miR-3178 promoted gemcitabine resistance in PC cells. These results were also verified by animal experiments. RhoB was down-regulated in gemcitabine-resistant PC cells and it was a downstream target of hsa-miR-3178. Kaplan-Meier survival curve showed that lower RhoB expression was significantly associated with poor overall survival in PC patients. Rescue assays demonstrated that RhoB could reverse hsa-miR-3178-mediated gemcitabine resistance. Interestingly, hsa-miR-3178 promoted gemcitabine resistance in PC by activating the PI3K/Akt pathway-mediated upregulation of ABC transporters. CONCLUSIONS: Our results indicate that hsa-miR-3178 promotes gemcitabine resistance via RhoB/PI3K/Akt signaling pathway-mediated upregulation of ABC transporters. These findings suggest that hsa-miR-3178 could be a novel therapeutic target for overcoming gemcitabine resistance in PC.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Desoxicitidina , MicroARNs , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteína de Unión al GTP rhoB , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteína de Unión al GTP rhoB/metabolismo , Gemcitabina , Neoplasias Pancreáticas
9.
BMC Complement Med Ther ; 21(1): 163, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088288

RESUMEN

BACKGROUND: C-Myc aberrations confer a more aggressive clinic behavior in diffuse large B-cell lymphoma (DLBCL). Matrine is an alkaloid extracted from Sophora flavescens Ait. It possesses anti-cancer property through inhibiting the cell proliferation and inducing the apoptosis. The present study aimed to explore the underlying mechanisms of matrine in suppressing the cell growth of DLBCL. METHODS: The influence of matrine on the viability of cultured DLBCL cell lines SU-DHL-16 and OCI-LY3 cells were determined by CCK-8. Apoptosis and cell cycle were measured by flow cytometry after matrine exposure. Western blot was taken to investigate the expression of activated Caspase-3, cleaved PARP, c-Myc, phospho-c-Myc (Ser62), CaMKIIγ, phospho-CaMKIIγ (Thr287), CDK4 and CDK6 after matrine treatment. Cycloheximide chase analysis was used to determine the c-Myc protein half-lives before and after matrine treatment. Growth salvage analysis was taken by ectopic expression of c-Myc. RESULTS: In cultured DLBCL cells, matrine suppressed cell viability in a concentration and time dependent fashion. Matrine treated SU-DHL-16 and OCI-LY3 cells for 48 h with IC50 value of 1.76 mM and 4.1 mM, respectively. Matrine induced apoptosis through a caspase-independent pathway and caused G0/G1 cell cycle arrest in a concentration dependent manner in DLBCL cells. The protein expression of c-Myc was inhibited while the transcription of c-Myc was not reduced by matrine. c-Myc protein half-lives were decreased from 30.4, 69.4 min to 16.6, 15.9 min after matrine treatment in SU-DHL-16 and OCI-LY3, respectively. As a critical protein kinase of c-Myc, CaMKIIγ phosphorylation at Thr287 was found to be down-regulated and c-Myc phosphorylation at Ser62 was reduced together after matrine treatment in DLBCL. The growth suppression of SU-DHL-16 cells induced by matrine was rescued by over-expression of c-Myc achieved by recombinant adenovirus infection. The decreased expression of CDK6, not CDK4, induced by matrine was rescued by ectopic expression of c-Myc protein. CONCLUSIONS: This study has shown for the first time that matrine suppresses cell growth of DLBCL via inhibiting CaMKIIγ/c-Myc/CDK6 signaling pathway.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Linfoma de Células B Grandes Difuso/metabolismo , Quinolizinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 6 Dependiente de la Ciclina/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Matrinas
10.
Front Oncol ; 11: 628353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816264

RESUMEN

Transmembrane protease serine 4 (TMPRSS4) is upregulated in various kinds of human cancers, including pancreatic cancer. However, its biological function in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the current study, real-time qPCR, immunohistochemical staining, Western blotting, and database (Cancer Genome Atlas and Gene Expression) analysis revealed remarkable overexpression of TMPRSS4 in PDAC tissue as compared to non-tumor tissue. The TMPRSS4 overexpression was associated with poor prognosis of PDAC patients. Moreover, multivariate analysis revealed that TMPRSS4 serves as an independent risk factor in PDAC. We performed gain-and loss-of-function analysis and found that TMPRSS4 promotes cellular proliferation and inhibits apoptosis of PDAC cells both in vitro and in vivo. Furthermore, we showed that TMPRSS4 might promote cell proliferation and inhibit apoptosis through activating ERK1/2 signaling pathway in pancreatic cancer cells. These findings were validated by using ERK1/2 phosphorylation inhibitor SCH772984 both in vitro and in vivo. Taken together, this study suggests that TMPRSS4 is a proto-oncogene, which promotes initiation and progression of PDAC by controlling cell proliferation and apoptosis. Our findings indicate that TMPRSS4 could be a promising prognostic biomarker and a therapeutic target for the treatment of pancreatic cancer.

11.
Aging (Albany NY) ; 12(22): 22840-22858, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33197892

RESUMEN

Pancreatic cancer (PC) is a severe disease with the highest mortality rate among various cancers. It is urgent to find an effective and accurate way to predict the survival of PC patients. Gene set variation analysis (GSVA) was used to establish and validate a miRNA set-based pathway prognostic signature for PC (miPPSPC) and a mRNA set-based pathway prognostic signature for PC (mPPSPC) in independent datasets. An optimized miPPSPC was constructed by combining clinical parameters. The miPPSPC, optimized miPPSPC and mPPSPC were established and validated to predict the survival of PC patients and showed excellent predictive ability. Four metabolic pathways and one oxidative stress pathway were identified in the miPPSPC, whereas linoleic acid metabolism and the pentose phosphate pathway were identified in the mPPSPC. Key factors of the pentose phosphate pathway and linoleic acid metabolism, G6PD and CYP2C8/9/18/19, respectively, are related to the survival of PC patients according to our tissue microarray. Thus, the miPPSPC, optimized miPPSPC and mPPSPC can predict the survival of PC patients efficiently and precisely. The metabolic and oxidative stress pathways may participate in PC progression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , ARN Mensajero/genética , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Pronóstico , Curva ROC
12.
Aging (Albany NY) ; 12(22): 23217-23232, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33221741

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is severely affecting the health and lives of patients. Clarifying the composition and regulatory factors of tumor immune microenvironment (TIME) is helpful for the treatment of PDAC. We analyzed the unique TIMEs and gene expression patterns between PDAC and adjacent normal tissue (ANT) using Gene Expression Omnibus (GEO) to find new immunotherapy targets. The Cancer Genome Atlas (TCGA) datasets were used to elucidate the possible mechanism of which tumor-associated macrophages (TAMs) changed in PDAC. We found that the composition of TAMs subtypes, including M0, M1, and M2, was different between PDAC and ANT, which was validated in recently published single-cell RNA-seq data. Many immune cells interacted with each other to affect the TIME. There were many DEGs enriched in some pathways that could potentially change the immune cell composition. KRT6A was found to be a DEG between PDAC and ANT that overlapped with DEGs between the M0-high group and the M0-low group in TCGA datasets, and it might alter and regulate TAMs via a collection of genes including COL5A2, COL1A2, MIR3606, SPARC, and COL6A3. TAMs, which could be a target of immunotherapy, might be influenced by genes through KRT6A and indicate an undesirable prognosis in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Queratina-6/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Macrófagos Asociados a Tumores/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidad , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Queratina-6/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Fenotipo , Pronóstico , Transducción de Señal , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo
13.
Theranostics ; 10(23): 10634-10651, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32929371

RESUMEN

Background: Due to the limitations of strategies for its early diagnosis and treatment, pancreatic cancer (PC) remains a substantial human health threat. We previously discovered a methylation-mediated lncRNA, LINC00261, which is downregulated in PC tissues. However, the underlying role of LINC00261 in PC remains largely unknown. Methods: Quantitative real-time PCR and in situ hybridization were performed to evaluate the expression levels of LINC00261 in PC, adjacent nontumor and normal pancreas tissues. The clinical significance of LINC00261 was assessed in multicenter PC samples. The functions of LINC00261 in PC were investigated by gain- and loss-of-function assays in vitro and in vivo. Potential downstream pathways and mechanisms were explored via RNA sequencing and bioinformatic analyses. RNA immunoprecipitation and chromatin immunoprecipitation assays were used to validate the underlying mechanisms. Pyrosequencing and targeted demethylation of the LINC00261 promoter were performed to explore the upstream epigenetic mechanisms and therapeutic potential. Results: LINC00261 was significantly downregulated in PC tissues, and its expression was positively associated with the prognosis of PC patients. Phenotypic studies indicated that LINC00261 overexpression significantly suppressed PC cell proliferation, migration and metastasis in vitro and in vivo. c-Myc was identified as a downstream target of LINC00261. LINC00261 repressed c-Myc transcription by physically interacting and binding with the bromo domain of p300/CBP, preventing the recruitment of p300/CBP to the promoter region of c-Myc and decreasing the H3K27Ac level. Moreover, the methylation level of the LINC00261 promoter was high in PC tissues and was correlated with poor prognosis. Targeted demethylation of the LINC00261 promoter inhibited PC progression both in vitro and in vivo. Conclusions: Our findings indicate that methylation-mediated LINC00261 suppresses PC progression by epigenetically repressing c-Myc expression. These findings expand the therapeutic potential of LINC00261, possibly providing evidence to support the development of epigenetic drugs or therapeutic strategies. This research adds further insights into the etiology of PC and indicates that LINC00261 may be a prognostic and therapeutic target in PC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/metabolismo , Anciano , Animales , Apoptosis/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Metilación de ADN , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Regulación hacia Abajo , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Páncreas/patología , Páncreas/cirugía , Pancreatectomía , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/cirugía , Pronóstico , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , RNA-Seq , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
BMC Complement Med Ther ; 20(1): 214, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641029

RESUMEN

BACKGROUND: C-Myc overexpression is associated with poor prognosis and aggressive progression of natural killer/T-cell lymphoma (NKTCL). Matrine, a main alkaloid of the traditional Chinese herb Sophora flavescens Ait, has been shown to inhibit cellular proliferation and induce apoptosis of various cancer cells. The present study investigated the effects and possible mechanisms of matrine inhibiting the growth of natural killer/T-cell lymphoma cells. METHODS: The effects of matrine on the proliferation, apoptosis and expression of apoptotic molecules, STAT3, LMP1, RUNX3, EZH2 and activation of CaMKIIγ/c-Myc pathway were examined in cultured NKTCL cell line NK92 cells. RESULTS: In cultured NK92 cells, matrine inhibited the proliferation in a dose and time dependent manner. The IC50 value of matrine was 1.71 mM for 72 h post exposure in NK92 cells. Matrine induced apoptosis with decreased Bcl-2 expression and the proteasome-dependent degradation of c-Myc protein in NK92 cells. c-Myc protein half-life in NK92 was reduced from 80.7 min to 33.4 min after matrine treatment, which meant the stability of c-Myc was decreased after matrine exposure. Furthermore, we found that matrine downregulated c-Myc phosphorylation at Ser62 together with the inhibition of CaMKIIγ, a key regulator of c-Myc protein in NKTCL. The downregulation of c-Myc transcription by matrine was mediated through LMP1 inhibition. We also observed that anti-proliferative activity of matrine was irrelevant to STAT3, RUNX3 and EZH2. CONCLUSIONS: The results of the present study indicated that matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating LMP1-c-Myc and CaMKIIγ-c-Myc signaling pathway.


Asunto(s)
Alcaloides/farmacología , Apoptosis/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proliferación Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Células Asesinas Naturales/metabolismo , Linfoma de Células T/tratamiento farmacológico , Quinolizinas/farmacología , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Células Cultivadas , Regulación hacia Abajo , Humanos , Transducción de Señal , Sophora , Matrinas
15.
Cell Death Dis ; 11(6): 412, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32487998

RESUMEN

Numerous long noncoding RNAs (lncRNAs) are aberrantly expressed in pancreatic cancer (PC); however, their functions and mechanisms in cancer progression are largely unknown. In this study, we identified a novel PC-associated lncRNA, RUNX1-IT1, that was significantly upregulated in PC patient samples from multiple centers and associated with poor prognosis. In vitro and in vivo, alterations in RUNX1-IT1 expression markedly affected PC proliferation, migration and invasion. RUNX1-IT1 contributed to the progression of PC by interacting with the adjacent gene RUNX1. Rescue experiments showed that RUNX1 reduced the cancer-promoting effect of RUNX1-IT1. RNA-seq analysis after silencing RUNX1-IT1 and RUNX1 highlighted alterations in the common target C-FOS. Mechanistically, we demonstrated that RUNX1-IT1 was a trans-acting factor that participated in the proliferation, migration and invasion of PC by recruiting RUNX1 to the C-FOS gene promoter. Furthermore, RUNX1-IT1 enhanced the transcription of the RUNX1 gene, indicating its potential as a cis-regulatory RNA involved in the upstream regulation of RUNX1. Overall, RUNX1-IT1 is a crucial oncogenic lncRNA that activates C-FOS expression by regulating and recruiting RUNX1 and is a potential prognostic biomarker and therapeutic target for PC.


Asunto(s)
Movimiento Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-fos/genética , ARN Largo no Codificante/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Largo no Codificante/genética , Regulación hacia Arriba/genética
16.
Ann Transl Med ; 8(6): 279, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32355723

RESUMEN

BACKGROUND: To identify key microRNAs (miRNAs) and their target mRNAs related to gemcitabine-resistant pancreatic cancer (PC) and investigate the association between gemcitabine-resistant-related miRNAs and mRNAs and immune infiltration. METHODS: Expression profiles of miRNAs and mRNAs were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed miRNAs and mRNAs (referred to as "DEmiRNAs" and "DEmRNAs", respectively) were distinguished between gemcitabine-resistant PC cells and its parental cells. The DEmRNAs targeted by the DEmiRNAs were retrieved using miRDB, microT, and Targetscan. Furthermore, GO and KEGG pathway enrichment analysis and GSEA were performed. The Kaplan-Meier plotter was used to analyze the prognosis of key DEmiRNAs and DEmRNAs on PC patients. The relationship between the key DEmRNAs and tumor-infiltrating immune cells in PC was investigated using CIBERSORT method using the LM22 signature as reference. Key infiltrating immune cells were further analyzed for the associations with prognosis of TCGA PAAD patients. RESULTS: Four DEmiRNAs, including hsa-miR-3178, hsa-miR-485-3p, hsa-miR-574-5p, and hsa-miR-584-5p, were identified to target seven DEmRNAs, including MSI2, TEAD1, GNPDA1, RND3, PRKACB, TRIM68, and YKT6, individually, in gemcitabine-resistant PC cells versus parental cells. Gemcitabine-resistant PC cells were enriched in proteasome-related, immune-related, and memory CD4+ T cell-related pathways, indicating a gemcitabine therapeutic effect on PC cells. All four DEmiRNAs and almost all DEmRNAs had an impact on the prognosis of PC patients. All seven DEmRNAs had remarkable effects on CD4+ memory T cells, which were affected by the gemcitabine therapeutic effect. Effector memory CD4+ T cells rather than central memory CD4+ T cells predicted a good prognosis according to the TCGA PAAD dataset. CONCLUSIONS: Gemcitabine resistance can alter the fraction of memory CD4+ T cells via hsa-miR-3178, hsa-miR-485-3p, hsa-miR-574-5p and hsa-miR-584-5p targeted MSI2, TEAD1, GNPDA1, RND3, PRKACB, TRIM68, and YKT6 network in PC.

17.
Am J Transl Res ; 11(5): 2983-2994, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31217868

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a genetic disease and a leading cause of cancer-related mortality. However, the molecular mechanism underlying PDAC progression remains unclear. In this study, we first confirmed that ECM1 is significantly upregulated in PDAC tissues and that its high levels of expression are closely associated with an advanced histologic grade and a poor prognosis using The Cancer Genome Atlas (TCGA) dataset and the Gene Expression Omnibus (GEO) database. We then found that miR-23a-5p binds directly to the ECM1 3'-untranslated region (3'-UTR), thereby inhibiting ECM1 expression. Functional studies revealed that the induced expression of ECM1 promoted oncogenic abilities and reversed the suppressive effects induced by miR-23a-5p. Collectively, our findings indicate that ECM1 is a proto-oncogene and show that targeting the miR-23a-5p/ECM1 axis may represent a promising therapeutic strategy for PDAC.

18.
Front Oncol ; 9: 1499, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32039003

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is associated with several genetic syndromes. However, the molecular mechanism underlying PDAC progression is still unknown. In this study, we showed that Laminin Subunit Beta 3 (LAMB3) was aberrantly overexpressed in PDAC and was closely associated with the overall survival rate of patients with PDAC. Functional studies demonstrated that LAMB3 played important roles in cell proliferation, the cell cycle, and invasion capacity. Using bioinformatics analysis, we determined that miR-24-3p was an upstream miRNA of LAMB3, and further experiments verified that miR-24-3p regulated LAMB3 expression in PDAC cells. A dual-luciferase reporter system demonstrated that miR-24-3p directly targeted the LAMB3 3'UTR, and FISH assay confirmed that miR-24-3p and LAMB3 mRNA mostly resided in cytoplasm, accounting for their post-translational regulation. Rescue assay demonstrated that miR-24-3p exerted its anti-cancer role by suppressing LAMB3 expression. Finally, by using a subcutaneous xenotransplanted tumor model, we demonstrated that miR-24-3p overexpression inhibited the proliferation of PDAC by suppressing LAMB3 expression in vivo. Collectively, our results provide evidence that the miR-24-3p/LAMB3 axis plays a vital role in the progression of PDAC and indicate that the miR-24-3p/LAMB3 axis may represent a novel therapeutic target for PDAC.

19.
J Biol Chem ; 292(38): 15717-15730, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28747437

RESUMEN

The eukaryotic B-family DNA polymerases include four members: Polα, Polδ, Polϵ, and Polζ, which share common architectural features, such as the exonuclease/polymerase and C-terminal domains (CTDs) of catalytic subunits bound to indispensable B-subunits, which serve as scaffolds that mediate interactions with other components of the replication machinery. Crystal structures for the B-subunits of Polα and Polδ/Polζ have been reported: the former within the primosome and separately with CTD and the latter with the N-terminal domain of the C-subunit. Here we present the crystal structure of the human Polϵ B-subunit (p59) in complex with CTD of the catalytic subunit (p261C). The structure revealed a well defined electron density for p261C and the phosphodiesterase and oligonucleotide/oligosaccharide-binding domains of p59. However, electron density was missing for the p59 N-terminal domain and for the linker connecting it to the phosphodiesterase domain. Similar to Polα, p261C of Polϵ contains a three-helix bundle in the middle and zinc-binding modules on each side. Intersubunit interactions involving 11 hydrogen bonds and numerous hydrophobic contacts account for stable complex formation with a buried surface area of 3094 Å2 Comparative structural analysis of p59-p261C with the corresponding Polα complex revealed significant differences between the B-subunits and CTDs, as well as their interaction interfaces. The B-subunit of Polδ/Polζ also substantially differs from B-subunits of either Polα or Polϵ. This work provides a structural basis to explain biochemical and genetic data on the importance of B-subunit integrity in replisome function in vivo.


Asunto(s)
Dominio Catalítico , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica
20.
J Biol Chem ; 291(19): 10006-20, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26975377

RESUMEN

The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.


Asunto(s)
ADN Polimerasa I/química , ADN Primasa/química , ADN/química , Complejos Multienzimáticos/química , Ácidos Nucleicos Heterodúplex/química , ADN/biosíntesis , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Humanos , Complejos Multienzimáticos/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...